Kullback-Leibler Maillard Sampling for Multi-armed Bandits with Bounded Rewards

NeurIPS 2023  ·  Hao Qin, Kwang-Sung Jun, Chicheng Zhang ·

We study $K$-armed bandit problems where the reward distributions of the arms are all supported on the $[0,1]$ interval. It has been a challenge to design regret-efficient randomized exploration algorithms in this setting. Maillard sampling \cite{maillard13apprentissage}, an attractive alternative to Thompson sampling, has recently been shown to achieve competitive regret guarantees in the sub-Gaussian reward setting \cite{bian2022maillard} while maintaining closed-form action probabilities, which is useful for offline policy evaluation. In this work, we propose the Kullback-Leibler Maillard Sampling (KL-MS) algorithm, a natural extension of Maillard sampling for achieving KL-style gap-dependent regret bound. We show that KL-MS enjoys the asymptotic optimality when the rewards are Bernoulli and has a worst-case regret bound of the form $O(\sqrt{\mu^*(1-\mu^*) K T \ln K} + K \ln T)$, where $\mu^*$ is the expected reward of the optimal arm, and $T$ is the time horizon length.

PDF Abstract NeurIPS 2023 PDF NeurIPS 2023 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here