Nuclear Pleomorphism in Canine Cutaneous Mast Cell Tumors: Comparison of Reproducibility and Prognostic Relevance between Estimates, Manual Morphometry and Algorithmic Morphometry

Variation in nuclear size and shape is an important criterion of malignancy for many tumor types; however, categorical estimates by pathologists have poor reproducibility. Measurements of nuclear characteristics (morphometry) can improve reproducibility, but manual methods are time consuming. The aim of this study was to explore the limitations of estimates and develop alternative morphometric solutions for canine cutaneous mast cell tumors (ccMCT). We assessed the following nuclear evaluation methods for measurement accuracy, reproducibility, and prognostic utility: 1) anisokaryosis (karyomegaly) estimates by 11 pathologists; 2) gold standard manual morphometry of at least 100 nuclei; 3) practicable manual morphometry with stratified sampling of 12 nuclei by 9 pathologists; and 4) automated morphometry using a deep learning-based segmentation algorithm. The study dataset comprised 96 ccMCT with available outcome information. The study dataset comprised 96 ccMCT with available outcome information. Inter-rater reproducibility of karyomegaly estimates was low ($\kappa$ = 0.226), while it was good (ICC = 0.654) for practicable morphometry of the standard deviation (SD) of nuclear size. As compared to gold standard manual morphometry (AUC = 0.839, 95% CI: 0.701 - 0.977), the prognostic value (tumor-specific survival) of SDs of nuclear area for practicable manual morphometry (12 nuclei) and automated morphometry were high with an area under the ROC curve (AUC) of 0.868 (95% CI: 0.737 - 0.991) and 0.943 (95% CI: 0.889 - 0.996), respectively. This study supports the use of manual morphometry with stratified sampling of 12 nuclei and algorithmic morphometry to overcome the poor reproducibility of estimates.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here