Optimal learning of high-dimensional classification problems using deep neural networks

23 Dec 2021  ·  Philipp Petersen, Felix Voigtlaender ·

We study the problem of learning classification functions from noiseless training samples, under the assumption that the decision boundary is of a certain regularity. We establish universal lower bounds for this estimation problem, for general classes of continuous decision boundaries. For the class of locally Barron-regular decision boundaries, we find that the optimal estimation rates are essentially independent of the underlying dimension and can be realized by empirical risk minimization methods over a suitable class of deep neural networks. These results are based on novel estimates of the $L^1$ and $L^\infty$ entropies of the class of Barron-regular functions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here