Reward Maximisation through Discrete Active Inference

17 Sep 2020  ·  Lancelot Da Costa, Noor Sajid, Thomas Parr, Karl Friston, Ryan Smith ·

Active inference is a probabilistic framework for modelling the behaviour of biological and artificial agents, which derives from the principle of minimising free energy. In recent years, this framework has successfully been applied to a variety of situations where the goal was to maximise reward, offering comparable and sometimes superior performance to alternative approaches. In this paper, we clarify the connection between reward maximisation and active inference by demonstrating how and when active inference agents perform actions that are optimal for maximising reward. Precisely, we show the conditions under which active inference produces the optimal solution to the Bellman equation--a formulation that underlies several approaches to model-based reinforcement learning and control. On partially observed Markov decision processes, the standard active inference scheme can produce Bellman optimal actions for planning horizons of 1, but not beyond. In contrast, a recently developed recursive active inference scheme (sophisticated inference) can produce Bellman optimal actions on any finite temporal horizon. We append the analysis with a discussion of the broader relationship between active inference and reinforcement learning.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here